Octave Functions for Information Gain (Mutual Information)
April 7, 2008 Posted by Emre S. Tasci
Here is some set of functions freshly coded in GNU Octave that deal with Information Gain and related quantities.
For theoretical background and mathematica correspondence of the functions refer to : A Crash Course on Information Gain & some other DataMining terms and How To Get There (my 21/11/2007dated post)
function [t r p] = est_members(x)
Finds the distinct members of given vector x returns 3 vectors r, t and p where :
r : ordered unique member list
t : number of occurences of each element in r
p : probability of each element in r
Example :
octave:234> x
x =
1 2 3 3 2 1 1
octave:235> [r t p] = est_members(x)
r =
1 2 3
t =
3 2 2
p =
0.42857 0.28571 0.28571
function C = est_scent(z,x,y,y_n)
Calculates the specific conditional entropy H(X|Y=y_n)
It is assumed that:
X is stored in the x. row of z
Y is stored in the y. row of z
Example :
octave:236> y
y =
1 2 1 1 2 3 2
octave:237> z=[x;y]
z =
1 2 3 3 2 1 1
1 2 1 1 2 3 2
octave:238> est_scent(z,1,2,2)
ans = 0.63651
function cent = est_cent(z,x,y)
Calculates the conditional entropy H(X|Y)
It is assumed that:
X is stored in the x. row of z
Y is stored in the y. row of z
Example :
octave:239> est_cent(z,1,2)
ans = 0.54558
function ig = est_ig(z,x,y)
Calculates the Information Gain (Mutual Information) IG(X|Y) = H(X) – H(X|Y)
It is assumed that:
X is stored in the x. row of z
Y is stored in the y. row of z
Example :
octave:240> est_ig(z,1,2)
ans = 0.53341
function ig = est_ig2(x,y)
Calculates the Information Gain IG(X|Y) = H(X) – H(X|Y)
Example :
octave:186> est_ig2(x,y)
ans = 0.53341
function ig = est_ig2n(x,y)
Calculates the Normalized Information Gain
IG(X|Y) = [H(X) – H(X|Y)]/min(H(X),H(Y))
Example :
octave:187> est_ig2n(x,y)
ans = 0.53116
function ent = est_entropy(p)
Calculates the entropy for the given probabilities vector p :
H(P) = – SUM(p_i * Log(p_i))
Example :
octave:241> p
p =
0.42857 0.28571 0.28571
octave:242> est_entropy(p)
ans = 1.0790
function ent = est_entropy_from_values(x)
Calculates the entropy for the given values vector x:
H(P) = -Sum(p(a_i) * Log(p(a_i))
where {a} is the set of possible values for x.
Example :
octave:243> x
x =
1 2 3 3 2 1 1
octave:244> est_entropy_from_values(x)
ans = 1.0790
Supplementary function files:
function [t r p] = est_members(x)
% Finds the distinct members of x
% r : ordered unique member list
% t : number of occurences of each element in r
% p : probability of each element in r
% Emre S. Tasci 7/4/2008
t = unique(x);
l = 0;
for i = t
l++;
r(l) = length(find(x==i));
endfor
N = length(x);
p = r/N;
endfunction
function C = est_scent(z,x,y,y_n)
% Calculates the specific conditional entropy H(X|Y=y_n)
% It is assumed that:
% X is stored in the x. row of z
% Y is stored in the y. row of z
% y_n is located in the list of possible values of y
% (i.e. [r t p] = est_members(z(y,:))
% y_n = r(n)
% Emre S. Tasci 7/4/2008
[r t p] = est_members(z(x,:)(z(y,:)==y_n));
C = est_entropy(p);
endfunction
function cent = est_cent(z,x,y)
% Calculates the conditional entropy H(X|Y)
% It is assumed that:
% X is stored in the x. row of z
% Y is stored in the y. row of z
% Emre S. Tasci 7/4/2008
cent = 0;
j = 0;
[r t p] = est_members(z(y,:));
for i=r
j++;
cent += p(j)*est_scent(z,x,y,i);
endfor
endfunction
function ig = est_ig(z,x,y)
% Calculates the Information Gain IG(X|Y) = H(X) – H(X|Y)
% X is stored in the x. row of z
% Y is stored in the y. row of z
% Emre S. Tasci 7/4/2008
[r t p] = est_members(z(x,:));
ig = est_entropy(p) – est_cent(z,x,y);
endfunction
function ig = est_ig2(x,y)
% Calculates the Information Gain IG(X|Y) = H(X) – H(X|Y)
% Emre S. Tasci <e.tasci@tudelft.nl> 8/4/2008
z = [x;y];
[r t p] = est_members(z(1,:));
ig = est_entropy(p) – est_cent(z,1,2);
endfunction
function ig = est_ig2n(x,y)
% Calculates the Normalized Information Gain
% IG(X|Y) = [H(X) – H(X|Y)]/min(H(X),H(Y))
% Emre S. Tasci <e.tasci@tudelft.nl> 8/4/2008
z = [x;y];
[r t p] = est_members(z(1,:));
entx = est_entropy(p);
enty = est_entropy_from_values(y);
minent = min(entx,enty);
ig = (entx – est_cent(z,1,2))/minent;
endfunction
function ent = est_entropy(p)
% Calculates the Entropy of the given probability vector X:
% H(X) = – Sigma(X*Log(x))
% If you want to directly calculate the entropy from values array
% use est_entropy_from_values(X) function
%
% Emre S. Tasci 7/4/2008
ent = 0;
for i = p
ent += -i*log(i);
endfor
endfunction
function ent = est_entropy_from_values(x)
% Calculates the Entropy of the given set of values X:
% H(X) = – Sigma(p(X_i)*Log(p(X_i)))
% If you want to calculate the entropy from probabilities array
% use est_entropy(X) function
%
% Emre S. Tasci 7/4/2008
ent = 0;
[r t p] = est_members(x);
for i = p
ent += -i*log(i);
endfor
endfunction
Leave a Reply