from SVN to Mercurial
August 23, 2011 Posted by Emre S. Tasci
I’ve been using SVN for revision control system for some time. I certainly benefited from it to organize or fall-back to a stable version (“the good old times”) when I was in trouble while I was computing solo but there were two things that always upset me while using it:
- Commiting meant publishing: This issue might be worked around when you have your trunk (we actually have the trunk for the ‘most recent’ status and a ‘released’ branch for the tested and stable programs of that trunk) and each of the developers play in their branches until it looks OK and hence merge it to trunk (and hopefully eventually make it to the ‘released’ branch), but the problem is, most of the time I’m in the middle of the coding process (in my branch) and it would be nice if I didn’t affect the main repository everytime I made a commit (it’s really not very nice) – in other words, even in my branch I would like to save while not making them available. The answer to this lies of course in distributed revision control systems (dvcs).
- Merging: Merging is hell in SVN when you have many developers. Been there, suffered that.
I had heard of git and bazaar but -for some reasons I don’t know why- never had taken the step to give them a try. Very recently, in a scientific gathering, one of the participants suggested me to use mercurial. The interesting thing about this is, he was suggesting it as a means to enable an “undo” option for a -scientifing- refinement program which has the tendency to update your files in according to the changes you applied. I know this sounds natural but when you tried some method and it didn’t worked, you couldn’t go just one step back and use a different method – you have to start from scratch with your initial input file and apply the methods so far but the last consecutively over again. So, my friend was actually recommending me to use a revision control system for the work files (which can be done perfectly well via SVN, by the way) and he happened to be using mercurial. He suggested to check this website by Joel Spolsky (http://hginit.com/) to get it going and the website is very intriguing, indeed. So I have been running some tests to get my feet wet and it was going so well until I found that the log command didn’t reveal the list of the changes made upon the files per changeset (‘revision’ in terms of SVN). I searched and searched and at the end I found the solution on hg tip (http://hgtip.com/tips/advanced/2010-01-15-styling-mercurials-cli/) website by Steve Losh. His ‘Nice Log’ script was exactly what I was looking for plus some additional effective logging templates.
I don’t think for our big project I can make the switch from SVN to Mercurial, but from now on, I’ll be ‘hg init’ing instead of ‘svnadmin create’ing for the projects to come.
Exploring through the paths of subgroups, collecting indexes on the way…
June 6, 2011 Posted by Emre S. Tasci
Having a personal wiki has its pros and cons with the pros being obvious but, on the other hand, one doesn’t feel like reposting what he has already committed into the corresponding wikipedia entry (and since reposting means filtering out the sensitive information and generalizing it, it is double the effort). So this fact, more or less, explains my absence of activity in this blog for the last 1.5 years. But then, there is one negative aspect of personal wikipedia “blogging” – it’s like putting everything under the rug : you classify the data/information and then you forget that it is there. That’s when “actual” blogging (like this one) comes handy. So, sorry & welcome back..
Today, I’ll present a code that I’ve just written to parse out the compatible paths from a tree. In my case, the three is the list of subgroups with indexes that one can acquire using Bilbao Crystallographic Server’s marvelous SUBGROUPGRAPH tool. For low indexes, you can already have SUBGROUPGRAPH do this for you by specifying your supergroup G, subgroup H and the index [G:H]. For example, for G=136, H=14 and [G:H] = 8, you can have the following paths drawn:
But as I said, things can get rough when you have a high index. In that case, we can (and we will) try to parse and analyze the paths tree which is outputted by SUBGROUPGRAPH when no index is designated, e.g., for G=136, H=14:
Where you see the maximal subgroups for the involved groups and their corresponding indexes. So, to go from P4_2/mnm (#136) to P2_1/c (#14) with index 8, we can follow the path:
P4_2/mnm (#136) –[2]–> Cmmm (#65) –[2]–> Pmna (#53) –[2]–> P2_1/c (#14)
with the related indexes given in the brackets totaling to 2x2x2 = 8.
The problem I had today was to find possible paths going from G=Fd-3m (#227) to H=Cc (#9) with index [G:H] = 192.
I first parsed the subgroup list into an array with their indexes, then followed the possible paths.
<?PHP
/* Emre S. Tasci <exxx.txxxx@ehu.es> *
* By parsing the possible subgroup paths obtained from
* SUBGROUPGRAPH, finds the paths that are compatible
* with the given terminal super & sub groups and the
* designated index.
*
* 06/06/11 */
# Input Data === 0 ====================================================
$start_sup = 227;
$crit_index = 192;
$end_sub = 9;
$arr = file("data.txt"); # A sample of data.txt for the case of #227->#9
# is included at the end of the code.
# Input Data === 1 ====================================================
$arr_subs = Array();
$arr_labels = Array();
foreach($arr as $line)
{
$auxarr = preg_split("/[ \t]+/",trim($line));
#echo $auxarr[2]."\n";
$sup = $auxarr[1];
$suplabel = $auxarr[2];
$arrsubs = split(";",$auxarr[3]);
$arr_labels[$sup] = $suplabel;
foreach($arrsubs as $subind)
{
$auxarr2 = Array();
preg_match("/([0-9]+)\[([0-9]+)\]/",$subind,$auxarr2);
#print_r($auxarr2);
$sub = $auxarr2[1];
$index = $auxarr2[2];
$arr_subs[$sup][$index][] = $sub;
}
}
#print_r($arr_subs);
# Start exploring
$start_sup = sprintf("%03d",$start_sup);
$end_sub = sprintf("%03d",$end_sub);
$arr_paths = Array();
$arr_paths[$start_sup] = 1;
findpath($start_sup);
function findpath($current_sup)
{
global $arr_paths,$arr_subs,$crit_index,$end_sub;
#echo "*".$current_sup."*\n";
if(strrpos($current_sup,"-") !== FALSE)
{
$current_sup_last_sup = substr($current_sup,strrpos($current_sup,"-")+1);
$current_sup_last_sup = substr($current_sup_last_sup,0,strpos($current_sup_last_sup,"["));
}
else
$current_sup_last_sup = $current_sup;
#echo "*".$current_sup_last_sup."*\n";
$subindexes = array_keys($arr_subs[$current_sup_last_sup]);
foreach($subindexes as $subindex)
{
$subs = $arr_subs[$current_sup_last_sup][$subindex];
echo $subindex.": ".join(",",$subs)."\n";
foreach($subs as $sub)
{
echo $current_sup."-".$sub."[".$subindex."]"."\n";
$arr_paths[$current_sup."-".$sub."[".$subindex."]"] = $arr_paths[$current_sup] * $subindex;
if($arr_paths[$current_sup."-".$sub."[".$subindex."]"]<$crit_index)
findpath($current_sup."-".$sub."[".$subindex."]");
elseif($arr_paths[$current_sup."-".$sub."[".$subindex."]"] == $crit_index && $sub == $end_sub)
echo "\nPath Found: ".$current_sup."-".$sub."[".$subindex."]"."\n\n";
}
}
#print_r($subindexes);
}
print_r($arr_paths);
/*
data.txt:
1 227 Fd-3m 141[3];166[4];203[2];216[2]
2 220 I-43d 122[3];161[4]
3 219 F-43c 120[3];161[4];218[4]
4 218 P-43n 112[3];161[4];220[4]
5 217 I-43m 121[3];160[4];215[2];218[2]
6 216 F-43m 119[3];160[4];215[4]
7 215 P-43m 111[3];160[4];216[2];217[4];219[2]
8 203 Fd-3 070[3]
9 167 R-3c 015[3];161[2];165[3];167[4];167[5];167[7]
10 166 R-3m 012[3];160[2];164[3];166[2];166[4];166[5];166[7];167[2]
11 165 P-3c1 015[3];158[2];163[3];165[3];165[4];165[5];165[7]
12 164 P-3m1 012[3];156[2];162[3];164[2];164[3];164[4];164[5];164[7];165[2]
13 163 P-31c 015[3];159[2];163[3];163[4];163[5];163[7];165[3];167[3]
14 162 P-31m 012[3];157[2];162[2];162[3];162[4];162[5];162[7];163[2];164[3];166[3]
15 161 R3c 009[3];158[3];161[4];161[5];161[7]
16 160 R3m 008[3];156[3];160[2];160[4];160[5];160[7];161[2]
17 159 P31c 009[3];158[3];159[3];159[4];159[5];159[7];161[3]
18 158 P3c1 009[3];158[3];158[4];158[5];158[7];159[3]
19 157 P31m 008[3];156[3];157[2];157[3];157[4];157[5];157[7];159[2];160[3]
20 156 P3m1 008[3];156[2];156[3];156[4];156[5];156[7];157[3];158[2]
21 141 I41/amd 070[2];074[2];088[2];109[2];119[2];122[2];141[3];141[5];141[7];141[9]
22 122 I-42d 043[2];122[3];122[5];122[7];122[9]
23 121 I-42m 042[2];111[2];112[2];113[2];114[2];121[3];121[5];121[7];121[9]
24 120 I-4c2 045[2];116[2];117[2];120[3];120[5];120[7];120[9]
25 119 I-4m2 044[2];115[2];118[2];119[3];119[5];119[7];119[9]
26 118 P-4n2 034[2];118[3];118[5];118[7];118[9];122[2]
27 117 P-4b2 032[2];117[2];117[3];117[5];117[7];117[9];118[2]
28 116 P-4c2 027[2];112[2];114[2];116[3];116[5];116[7];116[9]
29 115 P-4m2 025[2];111[2];113[2];115[2];115[3];115[5];115[7];115[9];116[2];121[2]
30 114 P-421c 037[2];114[3];114[5];114[7];114[9]
31 113 P-421m 035[2];113[2];113[3];113[5];113[7];113[9];114[2]
32 112 P-42c 037[2];112[3];112[5];112[7];112[9];116[2];118[2]
33 111 P-42m 035[2];111[2];111[3];111[5];111[7];111[9];112[2];115[2];117[2];119[2];120[2]
34 109 I41md 043[2];044[2];109[3];109[5];109[7];109[9]
35 088 I41/a 015[2];088[3];088[5];088[7];088[9]
36 074 Imma 012[2];015[2];044[2];046[2];051[2];052[2];053[2];062[2];074[3];074[5];074[7]
37 070 Fddd 015[2];043[2];070[3];070[5];070[7]
38 064 Cmce 012[2];014[2];015[2];036[2];039[2];041[2];053[2];054[2];055[2];056[2];057[2];060[2];061[2];062[2];064[3];064[5];064[7]
39 063 Cmcm 011[2];012[2];015[2];036[2];038[2];040[2];051[2];052[2];057[2];058[2];059[2];060[2];062[2];063[3];063[5];063[7]
40 062 Pnma 011[2];014[2];026[2];031[2];033[2];062[3];062[5];062[7]
41 061 Pbca 014[2];029[2];061[3];061[5];061[7]
42 060 Pbcn 013[2];014[2];029[2];030[2];033[2];060[3];060[5];060[7]
43 059 Pmmn 011[2];013[2];025[2];031[2];056[2];059[2];059[3];059[5];059[7];062[2]
44 058 Pnnm 010[2];014[2];031[2];034[2];058[3];058[5];058[7]
45 057 Pbcm 011[2];013[2];014[2];026[2];028[2];029[2];057[2];057[3];057[5];057[7];060[2];061[2];062[2]
46 056 Pccn 013[2];014[2];027[2];033[2];056[3];056[5];056[7]
47 055 Pbam 010[2];014[2];026[2];032[2];055[2];055[3];055[5];055[7];058[2];062[2]
48 054 Pcca 013[2];014[2];027[2];029[2];032[2];052[2];054[2];054[3];054[5];054[7];056[2];060[2]
49 053 Pmna 010[2];013[2];014[2];028[2];030[2];031[2];052[2];053[2];053[3];053[5];053[7];058[2];060[2]
50 052 Pnna 013[2];014[2];030[2];033[2];034[2];052[3];052[5];052[7]
51 051 Pmma 010[2];011[2];013[2];025[2];026[2];028[2];051[2];051[3];051[5];051[7];053[2];054[2];055[2];057[2];059[2];063[2];064[2]
52 046 Ima2 008[2];009[2];026[2];028[2];030[2];033[2];046[3];046[5];046[7]
53 045 Iba2 009[2];027[2];029[2];032[2];045[3];045[5];045[7]
54 044 Imm2 008[2];025[2];031[2];034[2];044[3];044[5];044[7]
55 043 Fdd2 009[2];043[3];043[5];043[7]
56 042 Fmm2 008[2];035[2];036[2];037[2];038[2];039[2];040[2];041[2];042[3];042[5];042[7]
57 041 Aea2 007[2];009[2];029[2];030[2];032[2];033[2];041[3];041[5];041[7]
58 040 Ama2 006[2];009[2];028[2];031[2];033[2];034[2];040[3];040[5];040[7]
59 039 Aem2 007[2];008[2];026[2];027[2];028[2];029[2];039[2];039[3];039[5];039[7];041[2];045[2];046[2]
60 038 Amm2 006[2];008[2];025[2];026[2];030[2];031[2];038[2];038[3];038[5];038[7];040[2];044[2];046[2]
61 037 Ccc2 009[2];027[2];030[2];034[2];037[3];037[5];037[7]
62 036 Cmc21 008[2];009[2];026[2];029[2];031[2];033[2];036[3];036[5];036[7]
63 035 Cmm2 008[2];025[2];028[2];032[2];035[2];035[3];035[5];035[7];036[2];037[2];044[2];045[2];046[2]
64 034 Pnn2 007[2];034[3];034[5];034[7];043[2]
65 033 Pna21 007[2];033[3];033[5];033[7]
66 032 Pba2 007[2];032[2];032[3];032[5];032[7];033[2];034[2]
67 031 Pmn21 006[2];007[2];031[2];031[3];031[5];031[7];033[2]
68 030 Pnc2 007[2];030[2];030[3];030[5];030[7];034[2]
69 029 Pca21 007[2];029[2];029[3];029[5];029[7];033[2]
70 028 Pma2 006[2];007[2];028[2];028[3];028[5];028[7];029[2];030[2];031[2];032[2];040[2];041[2]
71 027 Pcc2 007[2];027[2];027[3];027[5];027[7];030[2];037[2]
72 026 Pmc21 006[2];007[2];026[2];026[3];026[5];026[7];029[2];031[2];036[2]
73 025 Pmm2 006[2];025[2];025[3];025[5];025[7];026[2];027[2];028[2];035[2];038[2];039[2];042[2]
74 015 C2/c 009[2];013[2];014[2];015[3];015[5];015[7]
75 014 P21/c 007[2];014[2];014[3];014[5];014[7]
76 013 P2/c 007[2];013[2];013[3];013[5];013[7];014[2];015[2]
77 012 C2/m 008[2];010[2];011[2];012[2];012[3];012[5];012[7];013[2];014[2];015[2]
78 011 P21/m 006[2];011[2];011[3];011[5];011[7];014[2]
79 010 P2/m 006[2];010[2];010[3];010[5];010[7];011[2];012[2];013[2]
80 008 Cm 006[2];007[2];008[2];008[3];008[5];008[7];009[2]
81 007 Pc 007[2];007[3];007[5];007[7];009[2]
82 006 Pm 006[2];006[3];006[5];006[7];007[2];008[2]
83 009 Cc 007[2];009[3];009[5];009[7]
*/
When run, the code lists all the paths with the matching ones preceded by “Path Found”, so if you grep wrt it, you’ll have, for this example:
sururi@husniya:/xxx$ php find_trpath_for_index.php |grep Path|sed "s:Path Found\: ::"
227-141[3]-070[2]-015[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-070[2]-015[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-070[2]-015[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-070[2]-015[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-070[2]-015[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-070[2]-015[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-070[2]-015[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-070[2]-043[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-008[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-008[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-008[2]-009[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-010[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-011[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-011[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-011[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-008[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-008[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-012[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-015[2]-009[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-015[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-012[2]-015[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-012[2]-015[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-015[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-015[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-008[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-008[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-008[2]-009[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-027[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-027[2]-037[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-035[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-035[2]-036[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-035[2]-037[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-035[2]-045[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-035[2]-046[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-038[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-038[2]-040[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-038[2]-046[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-039[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-039[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-039[2]-041[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-039[2]-045[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-039[2]-046[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-042[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-042[2]-036[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-042[2]-037[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-042[2]-040[2]-009[2]
227-141[3]-074[2]-044[2]-025[2]-042[2]-041[2]-009[2]
227-141[3]-074[2]-044[2]-031[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-031[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-044[2]-031[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-031[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-031[2]-033[2]-007[2]-009[2]
227-141[3]-074[2]-044[2]-034[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-008[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-008[2]-008[2]-009[2]
227-141[3]-074[2]-046[2]-008[2]-009[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-026[2]-036[2]-008[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-032[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-028[2]-041[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-030[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-030[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-030[2]-034[2]-007[2]-009[2]
227-141[3]-074[2]-046[2]-030[2]-034[2]-043[2]-009[2]
227-141[3]-074[2]-046[2]-033[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-010[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-011[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-011[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-011[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-027[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-027[2]-037[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-035[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-035[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-035[2]-037[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-035[2]-045[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-035[2]-046[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-038[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-038[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-038[2]-046[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-039[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-039[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-039[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-039[2]-045[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-039[2]-046[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-042[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-042[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-042[2]-037[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-042[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-025[2]-042[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-026[2]-036[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-032[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-028[2]-041[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-063[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-063[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-063[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-064[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-064[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-051[2]-064[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-053[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-027[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-027[2]-037[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-054[2]-032[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-055[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-055[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-055[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-055[2]-032[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-057[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-059[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-059[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-059[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-036[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-038[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-038[2]-040[2]-009[2]
227-141[3]-074[2]-051[2]-063[2]-038[2]-046[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-036[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-039[2]-007[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-039[2]-008[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-039[2]-041[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-039[2]-045[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-039[2]-046[2]-009[2]
227-141[3]-074[2]-051[2]-064[2]-041[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-052[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-030[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-030[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-030[2]-034[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-030[2]-034[2]-043[2]-009[2]
227-141[3]-074[2]-052[2]-033[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-052[2]-034[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-012[2]-008[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-012[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-010[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-032[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-028[2]-041[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-030[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-030[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-030[2]-034[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-030[2]-034[2]-043[2]-009[2]
227-141[3]-074[2]-053[2]-031[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-031[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-053[2]-031[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-031[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-031[2]-033[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-033[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-034[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-052[2]-034[2]-043[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-028[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-028[2]-040[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-028[2]-041[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-053[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-058[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-058[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-058[2]-034[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-058[2]-034[2]-043[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-013[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-013[2]-015[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-030[2]-007[2]-009[2]
227-141[3]-074[2]-053[2]-060[2]-033[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-011[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-011[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-062[2]-011[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-026[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-026[2]-036[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-029[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-026[2]-036[2]-008[2]-009[2]
227-141[3]-074[2]-062[2]-031[2]-006[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-031[2]-006[2]-008[2]-009[2]
227-141[3]-074[2]-062[2]-031[2]-007[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-031[2]-031[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-031[2]-033[2]-007[2]-009[2]
227-141[3]-074[2]-062[2]-033[2]-007[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-013[2]-007[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-013[2]-013[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-013[2]-013[2]-015[2]-009[2]
227-141[3]-088[2]-015[2]-013[2]-014[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-014[2]-007[2]-007[2]-009[2]
227-141[3]-088[2]-015[2]-014[2]-014[2]-007[2]-009[2]
227-141[3]-109[2]-043[2]-009[2]-007[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-006[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-006[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-007[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-008[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-008[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-008[2]-009[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-006[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-006[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-026[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-026[2]-036[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-027[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-027[2]-037[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-028[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-028[2]-040[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-028[2]-041[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-035[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-035[2]-036[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-035[2]-037[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-035[2]-045[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-035[2]-046[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-038[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-038[2]-040[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-038[2]-046[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-039[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-039[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-039[2]-041[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-039[2]-045[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-039[2]-046[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-042[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-042[2]-036[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-042[2]-037[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-042[2]-040[2]-009[2]
227-141[3]-109[2]-044[2]-025[2]-042[2]-041[2]-009[2]
227-141[3]-109[2]-044[2]-031[2]-006[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-031[2]-006[2]-008[2]-009[2]
227-141[3]-109[2]-044[2]-031[2]-007[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-031[2]-031[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-031[2]-033[2]-007[2]-009[2]
227-141[3]-109[2]-044[2]-034[2]-007[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-006[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-006[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-007[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-008[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-008[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-008[2]-009[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-006[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-006[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-026[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-026[2]-036[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-027[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-027[2]-037[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-028[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-028[2]-040[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-028[2]-041[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-035[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-035[2]-036[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-035[2]-037[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-035[2]-045[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-035[2]-046[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-038[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-038[2]-040[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-038[2]-046[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-039[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-039[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-039[2]-041[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-039[2]-045[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-039[2]-046[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-042[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-042[2]-036[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-042[2]-037[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-042[2]-040[2]-009[2]
227-141[3]-119[2]-044[2]-025[2]-042[2]-041[2]-009[2]
227-141[3]-119[2]-044[2]-031[2]-006[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-031[2]-006[2]-008[2]-009[2]
227-141[3]-119[2]-044[2]-031[2]-007[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-031[2]-031[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-031[2]-033[2]-007[2]-009[2]
227-141[3]-119[2]-044[2]-034[2]-007[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-006[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-006[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-026[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-026[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-027[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-027[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-028[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-028[2]-040[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-028[2]-041[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-035[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-035[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-035[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-035[2]-045[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-035[2]-046[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-038[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-038[2]-040[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-038[2]-046[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-039[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-039[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-039[2]-041[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-039[2]-045[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-039[2]-046[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-042[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-042[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-042[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-042[2]-040[2]-009[2]
227-141[3]-119[2]-115[2]-025[2]-042[2]-041[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-035[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-035[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-035[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-035[2]-045[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-035[2]-046[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-112[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-111[2]-120[2]-045[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-035[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-035[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-035[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-035[2]-045[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-035[2]-046[2]-009[2]
227-141[3]-119[2]-115[2]-113[2]-114[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-116[2]-027[2]-007[2]-009[2]
227-141[3]-119[2]-115[2]-116[2]-027[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-116[2]-112[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-116[2]-114[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-042[2]-008[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-042[2]-036[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-042[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-042[2]-040[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-042[2]-041[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-112[2]-037[2]-009[2]
227-141[3]-119[2]-115[2]-121[2]-114[2]-037[2]-009[2]
227-141[3]-119[2]-118[2]-034[2]-007[2]-007[2]-009[2]
227-141[3]-122[2]-043[2]-009[2]-007[2]-007[2]-009[2]
227-166[4]-012[3]-008[2]-006[2]-007[2]-009[2]
227-166[4]-012[3]-008[2]-006[2]-008[2]-009[2]
227-166[4]-012[3]-008[2]-007[2]-007[2]-009[2]
227-166[4]-012[3]-008[2]-008[2]-007[2]-009[2]
227-166[4]-012[3]-008[2]-008[2]-008[2]-009[2]
227-166[4]-012[3]-008[2]-009[2]-007[2]-009[2]
227-166[4]-012[3]-010[2]-006[2]-007[2]-009[2]
227-166[4]-012[3]-010[2]-006[2]-008[2]-009[2]
227-166[4]-012[3]-010[2]-012[2]-008[2]-009[2]
227-166[4]-012[3]-010[2]-012[2]-015[2]-009[2]
227-166[4]-012[3]-010[2]-013[2]-007[2]-009[2]
227-166[4]-012[3]-010[2]-013[2]-015[2]-009[2]
227-166[4]-012[3]-011[2]-006[2]-007[2]-009[2]
227-166[4]-012[3]-011[2]-006[2]-008[2]-009[2]
227-166[4]-012[3]-011[2]-014[2]-007[2]-009[2]
227-166[4]-012[3]-012[2]-008[2]-007[2]-009[2]
227-166[4]-012[3]-012[2]-008[2]-008[2]-009[2]
227-166[4]-012[3]-012[2]-012[2]-008[2]-009[2]
227-166[4]-012[3]-012[2]-012[2]-015[2]-009[2]
227-166[4]-012[3]-012[2]-013[2]-007[2]-009[2]
227-166[4]-012[3]-012[2]-013[2]-015[2]-009[2]
227-166[4]-012[3]-012[2]-014[2]-007[2]-009[2]
227-166[4]-012[3]-013[2]-007[2]-007[2]-009[2]
227-166[4]-012[3]-013[2]-013[2]-007[2]-009[2]
227-166[4]-012[3]-013[2]-013[2]-015[2]-009[2]
227-166[4]-012[3]-013[2]-014[2]-007[2]-009[2]
227-166[4]-012[3]-014[2]-007[2]-007[2]-009[2]
227-166[4]-012[3]-014[2]-014[2]-007[2]-009[2]
227-166[4]-012[3]-015[2]-009[2]-007[2]-009[2]
227-166[4]-012[3]-015[2]-013[2]-007[2]-009[2]
227-166[4]-012[3]-015[2]-013[2]-015[2]-009[2]
227-166[4]-012[3]-015[2]-014[2]-007[2]-009[2]
227-166[4]-160[2]-008[3]-006[2]-007[2]-009[2]
227-166[4]-160[2]-008[3]-006[2]-008[2]-009[2]
227-166[4]-160[2]-008[3]-007[2]-007[2]-009[2]
227-166[4]-160[2]-008[3]-008[2]-007[2]-009[2]
227-166[4]-160[2]-008[3]-008[2]-008[2]-009[2]
227-166[4]-160[2]-008[3]-009[2]-007[2]-009[2]
227-166[4]-160[2]-160[2]-008[3]-007[2]-009[2]
227-166[4]-160[2]-160[2]-008[3]-008[2]-009[2]
227-166[4]-160[2]-160[2]-160[2]-008[3]-009[2]
227-166[4]-160[2]-160[2]-160[2]-161[2]-009[3]
227-166[4]-160[2]-161[2]-009[3]-007[2]-009[2]
227-166[4]-160[2]-161[2]-161[4]-009[3]
227-166[4]-160[2]-160[4]-008[3]-009[2]
227-166[4]-160[2]-160[4]-161[2]-009[3]
227-166[4]-166[2]-012[3]-008[2]-007[2]-009[2]
227-166[4]-166[2]-012[3]-008[2]-008[2]-009[2]
227-166[4]-166[2]-012[3]-012[2]-008[2]-009[2]
227-166[4]-166[2]-012[3]-012[2]-015[2]-009[2]
227-166[4]-166[2]-012[3]-013[2]-007[2]-009[2]
227-166[4]-166[2]-012[3]-013[2]-015[2]-009[2]
227-166[4]-166[2]-012[3]-014[2]-007[2]-009[2]
227-166[4]-166[2]-160[2]-008[3]-007[2]-009[2]
227-166[4]-166[2]-160[2]-008[3]-008[2]-009[2]
227-166[4]-166[2]-160[2]-160[2]-008[3]-009[2]
227-166[4]-166[2]-160[2]-160[2]-161[2]-009[3]
227-166[4]-166[2]-166[2]-012[3]-008[2]-009[2]
227-166[4]-166[2]-166[2]-012[3]-015[2]-009[2]
227-166[4]-166[2]-166[2]-160[2]-008[3]-009[2]
227-166[4]-166[2]-166[2]-160[2]-161[2]-009[3]
227-166[4]-166[2]-166[2]-167[2]-015[3]-009[2]
227-166[4]-166[2]-166[2]-167[2]-161[2]-009[3]
227-166[4]-167[2]-015[3]-009[2]-007[2]-009[2]
227-166[4]-167[2]-015[3]-013[2]-007[2]-009[2]
227-166[4]-167[2]-015[3]-013[2]-015[2]-009[2]
227-166[4]-167[2]-015[3]-014[2]-007[2]-009[2]
227-166[4]-167[2]-161[2]-009[3]-007[2]-009[2]
227-166[4]-167[2]-161[2]-161[4]-009[3]
227-166[4]-167[2]-167[4]-015[3]-009[2]
227-166[4]-167[2]-167[4]-161[2]-009[3]
227-166[4]-166[4]-012[3]-008[2]-009[2]
227-166[4]-166[4]-012[3]-015[2]-009[2]
227-166[4]-166[4]-160[2]-008[3]-009[2]
227-166[4]-166[4]-160[2]-161[2]-009[3]
227-166[4]-166[4]-167[2]-015[3]-009[2]
227-166[4]-166[4]-167[2]-161[2]-009[3]
227-203[2]-070[3]-015[2]-009[2]-007[2]-007[2]-009[2]
227-203[2]-070[3]-015[2]-013[2]-007[2]-007[2]-009[2]
227-203[2]-070[3]-015[2]-013[2]-013[2]-007[2]-009[2]
227-203[2]-070[3]-015[2]-013[2]-013[2]-015[2]-009[2]
227-203[2]-070[3]-015[2]-013[2]-014[2]-007[2]-009[2]
227-203[2]-070[3]-015[2]-014[2]-007[2]-007[2]-009[2]
227-203[2]-070[3]-015[2]-014[2]-014[2]-007[2]-009[2]
227-203[2]-070[3]-043[2]-009[2]-007[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-006[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-006[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-007[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-008[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-008[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-008[2]-009[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-006[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-006[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-026[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-026[2]-036[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-027[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-027[2]-037[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-028[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-028[2]-040[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-028[2]-041[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-035[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-035[2]-036[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-035[2]-037[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-035[2]-045[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-035[2]-046[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-038[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-038[2]-040[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-038[2]-046[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-039[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-039[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-039[2]-041[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-039[2]-045[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-039[2]-046[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-042[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-042[2]-036[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-042[2]-037[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-042[2]-040[2]-009[2]
227-216[2]-119[3]-044[2]-025[2]-042[2]-041[2]-009[2]
227-216[2]-119[3]-044[2]-031[2]-006[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-031[2]-006[2]-008[2]-009[2]
227-216[2]-119[3]-044[2]-031[2]-007[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-031[2]-031[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-031[2]-033[2]-007[2]-009[2]
227-216[2]-119[3]-044[2]-034[2]-007[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-006[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-006[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-026[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-026[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-027[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-027[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-028[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-028[2]-040[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-028[2]-041[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-035[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-035[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-035[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-035[2]-045[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-035[2]-046[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-038[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-038[2]-040[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-038[2]-046[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-039[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-039[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-039[2]-041[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-039[2]-045[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-039[2]-046[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-042[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-042[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-042[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-042[2]-040[2]-009[2]
227-216[2]-119[3]-115[2]-025[2]-042[2]-041[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-035[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-035[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-035[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-035[2]-045[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-035[2]-046[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-112[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-111[2]-120[2]-045[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-035[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-035[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-035[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-035[2]-045[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-035[2]-046[2]-009[2]
227-216[2]-119[3]-115[2]-113[2]-114[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-116[2]-027[2]-007[2]-009[2]
227-216[2]-119[3]-115[2]-116[2]-027[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-116[2]-112[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-116[2]-114[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-042[2]-008[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-042[2]-036[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-042[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-042[2]-040[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-042[2]-041[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-112[2]-037[2]-009[2]
227-216[2]-119[3]-115[2]-121[2]-114[2]-037[2]-009[2]
227-216[2]-119[3]-118[2]-034[2]-007[2]-007[2]-009[2]
227-216[2]-160[4]-008[3]-006[2]-007[2]-009[2]
227-216[2]-160[4]-008[3]-006[2]-008[2]-009[2]
227-216[2]-160[4]-008[3]-007[2]-007[2]-009[2]
227-216[2]-160[4]-008[3]-008[2]-007[2]-009[2]
227-216[2]-160[4]-008[3]-008[2]-008[2]-009[2]
227-216[2]-160[4]-008[3]-009[2]-007[2]-009[2]
227-216[2]-160[4]-160[2]-008[3]-007[2]-009[2]
227-216[2]-160[4]-160[2]-008[3]-008[2]-009[2]
227-216[2]-160[4]-160[2]-160[2]-008[3]-009[2]
227-216[2]-160[4]-160[2]-160[2]-161[2]-009[3]
227-216[2]-160[4]-161[2]-009[3]-007[2]-009[2]
227-216[2]-160[4]-161[2]-161[4]-009[3]
227-216[2]-160[4]-160[4]-008[3]-009[2]
227-216[2]-160[4]-160[4]-161[2]-009[3]
227-216[2]-215[4]-111[3]-035[2]-008[2]-009[2]
227-216[2]-215[4]-111[3]-035[2]-036[2]-009[2]
227-216[2]-215[4]-111[3]-035[2]-037[2]-009[2]
227-216[2]-215[4]-111[3]-035[2]-045[2]-009[2]
227-216[2]-215[4]-111[3]-035[2]-046[2]-009[2]
227-216[2]-215[4]-111[3]-112[2]-037[2]-009[2]
227-216[2]-215[4]-111[3]-120[2]-045[2]-009[2]
227-216[2]-215[4]-160[4]-008[3]-009[2]
227-216[2]-215[4]-160[4]-161[2]-009[3]
227-216[2]-215[4]-219[2]-120[3]-045[2]-009[2]
227-216[2]-215[4]-219[2]-161[4]-009[3]
Coordination Numbers
September 3, 2009 Posted by Emre S. Tasci
Recently, we are working on liquid alloys and for our work, we need the coordination number distribution. It’s kind of a gray area when you talk about coordination number of atoms in a liquid but it’s better than nothing to understand the properties and even more. I’d like to write a log on the tools I’ve recently coded/used in order to refer to in the future if a similar situation occurs. Also, maybe there are some others conducting similar research so, the tools introduced here may be helpful to them.
Recently, while searching recent publications on liquid alloys, I’ve found a very good and resourceful article on liquid Na-K alloys by Dr. J.-F. Wax (“Molecular dynamics study of the static structure of liquid Na-K alloys”, Physica B 403 (2008) 4241-48 | doi:10.1016/j.physb.2008.09.014). In this paper, among other properties, he had also presented the partial pair distribution functions. Partial-pair distribution functions is the averaged probability that you’ll encounter an atom in r distance starting from another atom. In solid phase, due to the symmetry of the crystal structure, you have discrete values instead of a continuous distribution and everything is crystal clear but I guess that’s the price we pay dealing with liquids. 8)
Partial-pair distribution functions are very useful in the sense that they let you derive the bond-length between constituent atom species, corresponding to the first minimums of the plots. Hence, one can see the neighborhood ranges by just looking at the plots.
I’ve sent a mail to Dr. Wax explaining my research topics and my interest and asking for his research data to which he very kindly and generously replied by providing his data.
He had sent me a big file with numerous configurations (coordinates of the atoms) following each other. The first -and the simplest- task was to split the file into seperate configuration files via this bash script:
#!/bin/bash
# Script Name: split_POS4.sh
# Splits the NaK conf files compilation POS4_DAT into sepearate
# conf files.
# Emre S. Tasci <e.tasci@tudelft.nl>
# 01/09/09
linestart=2
p="p"
for (( i = 1; i <= 1000; i++ ))
do
echo $i;
lineend=$(expr $linestart + 2047)
confname=$(printf "%04d" $i)
echo -e "3\n2048" > $confname
sed -n "$linestart,$(echo $lineend$p)" POS4_DAT >> $confname
linestart=$(expr $lineend + 1)
cat $confname | qhull i TO $confname.hull
done
(The compilation was of 1000 configurations, each with 2048 atoms)
As you can check in the line before the “done” closer, I’ve -proudly- used Qhull software to calculate the convex hull of each configuration. A convex hull is the -hopefully minimum- shape that covers all your system. So, for each configuration I now had 2 files: “xxxx” (where xxxx is the id/number of the configuration set) storing the coordinates (preceded by 3 and 2048, corresponding to dimension and number of atoms information for the qhull to parse & process) and “xxxx.hull” file, generated by the qhull, containing the vertices list of each facet (preceded by the total number of facets).
A facet is (in 3D) the plane formed by the vertice points. Imagine a cube, where an atom lies at each corner, 3 in the inside. So, we can say that our system consists of 11 atoms and the minimal shape that has edges selected from system’s atoms and covering the whole is a cube, with the edges being the 8 atoms at the corners. Now, add an atom floating over the face at the top. Now the convex hull that wraps our new system would no longer be a 6-faced, 8-edged cube but a 9-faced, 9-edged polygon. I need to know the convex hull geometry in order to correctly calculate the coordination number distributions (details will follow shortly).
The aforementioned two files look like:
sururi@husniya hull_calcs $ head 0001
3
2048
0.95278770E+00 0.13334565E+02 0.13376155E+02
0.13025256E+02 0.87618381E+00 0.20168993E+01
0.12745038E+01 0.14068998E-01 0.22887323E+01
0.13066590E+02 0.20788591E+01 0.58119183E+01
0.10468218E+00 0.58523640E-01 0.64288678E+01
0.12839412E+02 0.13117012E+02 0.79093881E+01
0.11918105E+01 0.12163854E+02 0.10270868E+02
0.12673985E+02 0.11642538E+02 0.10514597E+02
sururi@husniya hull_calcs $ head 0001.hull
180
568 1127 1776
1992 104 1551
956 449 1026
632 391 1026
391 632 1543
391 956 1026
966 632 1026
966 15 1039
632 966 1039
The sets of 3 numbers in the xxxx.hull file is the ids/numbers of the atoms forming the edges of the facets, i.e., they are the vertices.
To calculate the coordination number distribution, you need to pick each atom and then simply count the other atoms within the cut-off distance depending on your atom’s and the neighboring atom’s species. After you do the counting for every atom, you average the results and voilà ! there is your CN distribution. But here’s the catch: In order to be able to count properly, you must make sure that, your reference atom’s cutoff radii stay within your system — otherwise you’ll be undercounting. Suppose your reference atom is one of the atoms at the corners of the cube: It will (generally/approximately) lack 7/8 of the neighbouring atoms it would normally have if it was to be the center atom of the specimen/sample. Remember that we are studying a continuous liquid and trying to model the system via ensembles of samples. So we should omit these atoms which has neighborhoods outside of our systems. Since neighborhoods are defined through bond-length, we should only include the atoms with a distance to the outside of at least cut-off radii. The “outside” is defined as the region outside the convex hull and it’s designated by the facets (planes).
From the xxxx.hull file, we have the ids of the vertice atoms and their coordinates are stored in the xxxx file. To define the plane equation
we will use the three vertice points, say p1, p2 and p3. From these 3 points, we calculate the normal n as:
then, the plane equation (hence the coefficients a,b,c,d) can be derived by comparing the following equation:
Here, (x0,y0,z0) are just the coordinates of any of the vertice points. And finally, the distance D between a point p1(x1,y1,z1) and a plane (a,b,c,d) is given by:
Since vector operations are involved, I thought it’s better to do this job in Octave and wrote the following script that calculates the coefficients of the facets and then sets down to find out the points whose distances to all the facets are greater than the given cut-off radius:
sururi@husniya trunk $ cat octave_find_atoms_within.m
DummyA = 3;
%conf_index=292;
% Call from the command line like :
% octave -q --eval "Rcut=1.65;conf_index=293;path='$(pwd)';" octave_find_atoms_within.m
% hence specifying the conf_index at the command line.
% Emre S. Tasci <e.tasci@tudelft.nl> *
%
% From the positions and vertices file, calculates the plane
% equations (stored in "facet_coefficients") and then
% filters the atoms with respect to their distances to these
% facets. Writes the output to
% "hull_calcs/xxxx_insiders.txt" file
% 03/09/09 */
conf_index_name = num2str(sprintf("%04d",conf_index));;
%clock
clear facet_coefficients;
facet_coefficients = [];
global p v facet_coefficients
fp = fopen(strcat(path,"/hull_calcs/",conf_index_name));
k = fscanf(fp,"%d",2); % 1st is dim (=3), 2nd is number of atoms (=2048)
p = fscanf(fp,"%f",[k(1),k(2)]);
p = p';
fclose(fp);
%p = load("/tmp/del/delco");
fp = fopen(strcat(path,"/hull_calcs/",conf_index_name,".hull"));
k = fscanf(fp,"%d",1);% number of facets
v = fscanf(fp,"%d",[3,k]);
v = v';
fclose(fp);
%v = load("/tmp/del/delver");
function [a,b,c,d,e] = getPlaneCoefficients(facet_index)
global p v
% Get the 3 vertices
p1 = p(v(facet_index,1)+1,:); % The +1s come from the fact
p2 = p(v(facet_index,2)+1,:); % that qhull enumeration begins
p3 = p(v(facet_index,3)+1,:); % from 0 while Octave's from 1
%printf("%d: %f %f %f %f %f %f %f %f %f\n",facet_index,p1,p2,p3);
% Calculate the normal
n = cross((p2-p1),(p3-p1));
% Calculate the coefficients of the plane :
% ax + by + cz +d = 0
a = n(1);
b = n(2);
c = n(3);
d = -(dot(n,p1));
e = norm(n);
if(e==0)
printf("%f\n",p1);
printf("%f\n",p2);
printf("%f\n",p3);
printf("%d\n",facet_index);
endif
endfunction
function dist = distanceToPlane(point_index,facet_index)
global p facet_coefficients
k = facet_coefficients(facet_index,:);
n = [k(1) k(2) k(3)];
dist = abs(dot(n,p(point_index,:)) + k(4)) / k(5);
endfunction
for i = [1:size(v)(1)]
[a,b,c,d,e] = getPlaneCoefficients(i);
facet_coefficients = [ facet_coefficients ; [a,b,c,d,e]];
endfor
%Rcut = 1.65; % Defined from command line calling
% Find the points that are not closer than Rcut
inside_atoms = [];
for point = [1:size(p)(1)]
%for point = [1:100]
inside=true;
for facet = [1:size(v)(1)]
%for facet = [1:10]
%printf("%d - %d : %f\n",point,facet,dist);
if (distanceToPlane(point,facet)<Rcut)
inside = false;
break;
endif
endfor
if(inside)
inside_atoms = [inside_atoms point-1];
endif
endfor
fp = fopen(strcat(path,"/hull_calcs/",conf_index_name,"_insiders.txt"),"w");
fprintf(fp,"%d\n",inside_atoms);
fclose(fp);
%clock
This script is runned within the following php code which then takes the filtered atoms and does the counting using them:
<?PHP
/* Emre S. Tasci <e.tasci@tudelft.nl> *
*
* parse_configuration_data.php
*
* Written in order to parse the configuation files
* obtained from J.F. Wax in order to calculate the
* Coordination Number distribution. Each configuration
* file contain 2048 atoms' coordinates starting at the
* 3rd line. There is also a convex hull file generated
* using qhull (http://www.qhull.com) that contains the
* indexes (starting from 0) of the atoms that form the
* vertices of the convex hull. Finally there is the
* IP.dat file that identifies each atom (-1 for K; 1 for
* Na -- the second column is the relative masses).
*
* 02/09/09 */
/*
# if present, remove the previous run's results file
if(file_exists("results.txt"))
unlink("results.txt");
*/
error_reporting(E_ALL ^ E_NOTICE);
if(!file_exists("results.txt"))
{
$fp = fopen("results.txt","w");
fwrite($fp,"CONF#"."\tNa".implode("\tNa",range(1,20))."\tK".implode("\tK",range(1,20))."\n");
fclose($fp);
}
# Support for command line variable passing:
for($i=1;$i<sizeof($_SERVER["argv"]);$i++)
{
list($var0,$val0) = explode("=",$_SERVER["argv"][$i]);
$_GET[$var0] = $val0;
}
if($_GET["configuration"])
calculate($_GET["configuration"]);
else
exit("Please specify a configuration number [php parse_configuration_data.php configuration=xxx]\n");
function calculate($conf_index)
{
# Define the atoms array
$arr_atoms = Array();
# Get the information from the files
parse_types($arr_atoms);
$refs = get_vertices($conf_index);
parse_coordinates($arr_atoms,$conf_index);
# Define the Rcut-off values (obtained from partial parid distribution minimums)
$Rcut_arr = Array();
$Rscale = 3.828; # To convert reduced distances to Angstrom (if needed)
$Rscale = 1; # To convert reduced distances to Angstrom
$Rcut_arr["Na"]["Na"] = 1.38 * $Rscale;
$Rcut_arr["Na"]["K"] = 1.65 * $Rscale;
$Rcut_arr["K"]["Na"] = 1.65 * $Rscale;
$Rcut_arr["K"]["K"] = 1.52 * $Rscale;
$Rcut = $Rcut_arr["Na"]["K"]; # Taking the maximum one as the Rcut for safety
/*
# We have everything we need, so proceed to check
# if an atom is at safe distance wrt to the vertices
# Define all the ids
$arr_test_ids = range(0,2047);
# Subtract the ref atoms' ids
$arr_test_ids = array_diff($arr_test_ids, $refs);
sort($arr_test_ids);
//print_r($arr_test_ids);
$arr_passed_atom_ids = Array();
# Check each atom against refs
for($id=0, $size=sizeof($arr_test_ids); $id<$size; $id++)
{
//echo $id."\n";
$arr_atoms[$arr_test_ids[$id]]["in"] = TRUE;
foreach ($refs as $ref)
{
$distance = distance($arr_atoms[$arr_test_ids[$id]],$arr_atoms[$ref]);
//echo "\t".$ref."\t".$distance."\n";
if($distance < $Rcut)
{
$arr_atoms[$arr_test_ids[$id]]["in"] = FALSE;
break;
}
}
if($arr_atoms[$arr_test_ids[$id]]["in"] == TRUE)
$arr_passed_atom_ids[] = $arr_test_ids[$id];
}
*/
# Run the octave script file to calculate the inside atoms
if(!file_exists("hull_calcs/".sprintf("%04d",$conf_index)."_insiders.txt"))
exec("octave -q --eval \"Rcut=".$Rcut.";conf_index=".$conf_index.";path='$(pwd)';\" octave_find_atoms_within.m");
# Read the file generated by Octave
$arr_passed_atom_ids = file("hull_calcs/".sprintf("%04d",$conf_index)."_insiders.txt",FILE_IGNORE_NEW_LINES);
$arr_test_ids = range(0,2047);
$arr_test_ids = array_diff($arr_test_ids, $refs);
sort($arr_test_ids);
for($i=0, $size=sizeof($arr_test_ids);$i<$size;$i++)
$arr_atoms[$arr_test_ids[$i]]["in"]=FALSE;
# Begin checking every passed atom
foreach($arr_passed_atom_ids as $passed_atom_id)
{
$arr_atoms[$passed_atom_id]["in"] = TRUE;
for($i=0, $size=sizeof($arr_atoms); $i<$size; $i++)
{
$distance = distance($arr_atoms[$passed_atom_id],$arr_atoms[$i]);
//echo $passed_atom_id."\t---\t".$i."\n";
if($distance < $Rcut_arr[$arr_atoms[$passed_atom_id]["id"]][$arr_atoms[$i]["id"]] && $distance>0.001)
$arr_atoms[$passed_atom_id]["neighbour_count"] += 1;
}
}
# Do the binning
$CN_Na = Array();
$CN_K = Array();
for($i=0, $size=sizeof($arr_atoms); $i<$size; $i++)
{
if(array_key_exists("neighbour_count",$arr_atoms[$i]))
{
${"CN_".$arr_atoms[$i]['id']}[$arr_atoms[$i]["neighbour_count"]] += 1;
}
}
ksort($CN_Na);
ksort($CN_K);
//print_r($arr_atoms);
//print_r($CN_Na);
//print_r($CN_K);
# Report the results
$filename = "results/".sprintf("%04d",$conf_index)."_results.txt";
$fp = fopen($filename,"w");
fwrite($fp, "### Atoms array ###\n");
fwrite($fp,var_export($arr_atoms,TRUE)."\n");
fwrite($fp, "\n### CN Distribution for Na ###\n");
fwrite($fp,var_export($CN_Na,TRUE)."\n");
fwrite($fp, "\n### CN Distribution for K ###\n");
fwrite($fp,var_export($CN_K,TRUE)."\n");
# Percentage calculation:
$sum_Na = array_sum($CN_Na);
$sum_K = array_sum($CN_K);
foreach($CN_Na as $key=>$value)
$CN_Na[$key] = $value * 100 / $sum_Na;
foreach($CN_K as $key=>$value)
$CN_K[$key] = $value * 100 / $sum_K;
//print_r($CN_Na);
//print_r($CN_K);
fwrite($fp, "\n### CN Distribution (Percentage) for Na ###\n");
fwrite($fp,var_export($CN_Na,TRUE)."\n");
fwrite($fp, "\n### CN Distribution (Percentage) for K ###\n");
fwrite($fp,var_export($CN_K,TRUE)."\n");
fclose($fp);
# Write the summary to the results file
$fp = fopen("results.txt","a");
for($i=1;$i<=20;$i++)
{
if(!array_key_exists($i,$CN_Na))
$CN_Na[$i] = 0;
if(!array_key_exists($i,$CN_K))
$CN_K[$i] = 0;
}
ksort($CN_Na);
ksort($CN_K);
fwrite($fp,sprintf("%04d",$conf_index)."\t".implode("\t",$CN_Na)."\t".implode("\t",$CN_K)."\n");
fclose($fp);
}
function parse_types(&$arr_atoms)
{
# Parse the types
$i = 0;
$fp = fopen("IP.DAT", "r");
while(!feof($fp))
{
$line = fgets($fp,4096);
$auxarr = explode(" ",$line);
if($auxarr[0]==-1)
$arr_atoms[$i]["id"] = "Na";
else
$arr_atoms[$i]["id"] = "K";
$i++;
}
fclose($fp);
array_pop($arr_atoms);
return 0;
}
function get_vertices($conf_index)
{
$arr_refs = Array();
# Get the ids of the vertices of the convex hull
$filename = "hull_calcs/".sprintf("%04d",$conf_index).".hull";
$fp = fopen($filename, "r");
# Bypass the first line
$line = fgets($fp,4096);
while(!feof($fp))
{
$line = fgets($fp,4096);
$auxarr = explode(" ",$line);
array_pop($auxarr);
$arr_refs = array_merge($arr_refs, $auxarr);
}
fclose($fp);
// $arr_refs = array_unique($arr_refs); # This doesn't lose the keys
$arr_refs = array_keys(array_count_values($arr_refs)); # But this does.
return $arr_refs;
}
function parse_coordinates(&$arr_atoms, $conf_index)
{
# Parse the coordinates
$i = 0;
$filename = "hull_calcs/".sprintf("%04d",$conf_index);
$fp = fopen($filename, "r");
# Bypass the first two lines
$line = fgets($fp,4096);
$line = fgets($fp,4096);
while(!feof($fp))
{
$line = fgets($fp,4096);
$arr_atoms[$i]["coords"] = explode(" ",$line);
array_shift($arr_atoms[$i]["coords"]);
$i++;
}
fclose($fp);
array_pop($arr_atoms);
return 0;
}
function distance(&$atom1,&$atom2)
{
# Calculate the distance between the two atoms
$x1 = $atom1["coords"][0];
$x2 = $atom2["coords"][0];
$y1 = $atom1["coords"][1];
$y2 = $atom2["coords"][1];
$z1 = $atom1["coords"][2];
$z2 = $atom2["coords"][2];
return sqrt(pow($x1-$x2,2) + pow($y1-$y2,2) + pow($z1-$z2,2));
}
?>
The code above generates a “results/xxxx_results.txt” file containing all the information obtained in arrays format and also appends to “results.txt” file the relevant configuration file’s CN distribution summary. The systems can be visualized using the output generated by the following plotter.php script:
<?PHP
/* Emre S. Tasci <e.tasci@tudelft.nl> *
* Parses the results/xxxx_results.txt file and generates
* an XYZ file such that the atoms are labeled as the
* vertice atoms, close-vertice atoms and inside atoms..
* 02/09/09 */
# Support for command line variable passing:
for($i=1;$i<sizeof($_SERVER["argv"]);$i++)
{
list($var0,$val0) = explode("=",$_SERVER["argv"][$i]);
$_GET[$var0] = $val0;
}
if($_GET["configuration"])
$conf_index = $_GET["configuration"];
else
exit("Please specify a configuration number [php plotter.php configuration=xxx]\n");
$filename = sprintf("%04d",$conf_index);
# Get the atom array from the results file. Since results file
# contains other arrays as well, we slice the file using sed for the
# relevant part
$last_arr_line = exec('grep "### CN Distribution" results/'.$filename.'_results.txt -n -m1|sed "s:^\([0-9]\+\).*:\1:gi"');
exec('sed -n "2,'.($last_arr_line-1).'p" results/'.$filename.'_results.txt > system_tmp_array_dump_file');
$str=file_get_contents('system_tmp_array_dump_file');
$atom_arr=eval('return '.$str.';');
unlink('system_tmp_array_dump_file');
# Now that we have the coordinates, we itarate over the atoms to check
# the characteristic and designate them in the XYZ file.
$fp = fopen("system_".$filename.".xyz","w");
fwrite($fp,sizeof($atom_arr)."\n");
fwrite($fp,"Generated by plotter.php\n");
for($i=0, $size=sizeof($atom_arr);$i<$size;$i++)
{
if(!array_key_exists("in",$atom_arr[$i]))
$atomlabel = "Mg";#Vertices
elseif($atom_arr[$i]["in"]==TRUE)
$atomlabel = $atom_arr[$i]["id"];#Inside atoms
else
$atomlabel = "O";#Close-vertice atoms
fwrite($fp,$atomlabel."\t".implode("\t",$atom_arr[$i]["coords"]));
}
fclose($fp);
?>
which generates a “system_xxxx.xyz” file, ready to be viewed in a standard molecule viewing software. It designates the vertice atoms (of the convex hull, remember? 8)as “Mg” and the atoms close to them as “O” for easy-viewing purpose. A sample parsed file looks like this:
The big orange atoms are the omitted vertice atoms; the small red ones are the atoms critically close to the facets and hence also omitted ones. You can see the purple and yellow atoms which have passed the test sitting happilly inside, with the counting done using them.. 8)
POSCAR2Cif with symmetries discovered
June 4, 2009 Posted by Emre S. Tasci
In previous posts, I had submitted two codes:
- POSCAR2Cif : that converts a given POSCAR file to CIF, so to speak, ruthlessly, i.e. just as is, without checking for symmetries or anything.
- POSCAR2findsymm : another converter that takes a POSCAR file, and prepares an input file such that Harold Stokes’ findsym code from the ISOTROPY package would proceed it and deduce the symmetry information. If findsym executable is not accessible in your system (or if you run the script with the “t” flag set to on), it would just print the input to the screen and you could use it to fill the input form of the code’s web implementation, instead
Anyway, recently it occured to me to write another script that would parse the output of the POSCAR2findsymm output and use that output to construct a CIF file that contained the equivalent sites, etc.. So, ladies and gentlemen, here it is (drums roll)…
Example: Code in action
Using the same POSCAR_Pd3S file as in the POSCAR2Cif entry… Feeding it to POSCAR2findsymm and then applying findsymm2cif on it
sururi@husniya tmp $ python /code/POSCAR2findsym/POSCAR2findsym.py POSCAR_Pd3S | php /code/vaspie/findsymm2cif.php speclist=Pd,S
_cell_length_a 7.21915
_cell_length_b 5.56683
_cell_length_c 7.68685
_cell_angle_alpha 90.00000
_cell_angle_beta 90.00000
_cell_angle_gamma 90.00000
_symmetry_Int_Tables_number 40
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Pd01 Pd 0.75000 0.17834 0.31139
Pd02 Pd 0.75000 0.17845 0.69126
Pd03 Pd 0.50000 0.00000 0.00132
S01 S 0.75000 0.81592 0.50152
Code
#!/usr/bin/php
<?PHP
//require("/code/toolbox/commandline.inc.php"); # Equivalent handling of $_GET / $_POST
# ============/code/toolbox/commandline.inc.php========================================
// Enables the same treat for command line parameters
// as those of GET parameters.
// Also sets the $first, $last ranges including the gall parameter
//Support for command line variable passing:
for($i=1;$i<sizeof($_SERVER["argv"]);$i++)
{
list($var0,$val0) = explode("=",$_SERVER["argv"][$i]);
$_GET[$var0] = $val0;
}
# ============/code/toolbox/commandline.inc.php========================================
if($_GET["h"]||$_GET["help"])
{
$help = <<<lol
* Script name: findsymmetry2cif.php *
* Converts the specified FINDSYM output to CIF format *
* More Information on FINDSYM : http://stokes.byu.edu/findsym.html *
* *
* (If you have access) More information on script: *
* http://dutsm2017.stm.tudelft.nl/mediawiki/index.php?title=Findsymm2cif
* *
* Emre S. Tasci <e.tasci@tudelft.nl> *
* 23/05/09 *
Usage:
f : input file (Default = stdin)
o : output file (Default = stdout)
identical : if set (identical=1), then the output will be the
transformation matrix and origin shift applied to the coordinates
so that the given coordinates will be regained.
speclist : Define the name of the species, seperated by 'xx' or ',' to be used
with neighbour listing (Default = AxxBxxCxx...)
(Labels can also be seperated via [space] as long as speclist is given
in quotation -- Example: ... speclist=\"Au Si\" )
Example : php findsymmetry2cif.php f=POSCAR_RhBi4 speclist=Bi,Rh identical=1
lol;
echo $help."\n";
exit;
}
$input = "php://stdin";
if($_GET["f"]) $input=$_GET["f"];
$outfile = "php://stdout";
if($_GET["o"]) $outfile=$_GET["o"];
$species_type_template = Array("A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z");
if($_GET["speclist"])$species_type_template = split("xx| |,",$_GET["speclist"]);
//if(file_exists("findsymm2cif_php.tmp"))
// unlink("findsymm2cif_php.tmp");
if($input == "php://stdin")
{
$lol = file("php://stdin");
$fp1 = fopen("findsymm2cif_php2.tmp","w");
foreach($lol as $line)
fwrite($fp1,$line);
fclose($fp1);
$input = "findsymm2cif_php2.tmp";
}
exec('lstart=`grep -n "Type of each atom:" '.$input.'|sed "s:^\([0-9]\+\).*:\1:gi"`;lstart=`expr $lstart + 1`;lfinish=`grep -n "Position of each atom (dimensionless coordinates)" '.$input.'|sed "s:^\([0-9]\+\).*:\1:gi"`;lfinish=`expr $lfinish - 1`;cat '.$input.' |sed -n "`echo $lstart`,`echo $lfinish`p" | sed \':a;N;$!ba;s/\n/ /g\' > findsymm2cif_php.tmp');
exec('grep "Number of atoms in unit cell:" '.$input.' -A1 | tail -n1 >> findsymm2cif_php.tmp');
exec('grep "Space Group" '.$input.' | awk \'{print $3}\' >> findsymm2cif_php.tmp');
exec('grep "Origin at" '.$input.' | awk \'{print $3 "\t" $4 "\t" $5}\' >> findsymm2cif_php.tmp');
exec('grep "Vectors a,b,c:" '.$input.' -A3 | tail -n3 >> findsymm2cif_php.tmp');
exec('grep "Values of a,b,c,alpha,beta,gamma:" '.$input.' -A1 | tail -n1 >> findsymm2cif_php.tmp');
exec('grep "Wyckoff" '.$input.' -A1 -n | grep "^[0-9]\+-[0-9]"| sed "s:\(^[0-9]\+\)-[0-9]\+\(.*\):\1\t\2:gi" >> findsymm2cif_php.tmp');
if($input == "findsymm2cif_php2.tmp")
{
$input = "php://stdin";
//unlink("findsymm2cif_php2.tmp");
}
//exec("sh findsymm2cif.sh findsymm.out",$file);
$file = file("findsymm2cif_php.tmp");
$type_atoms = split("[ \t]+",trim($file[0]));
$specie_count = Array();
$k = 0;
$specie_count[$k] = 1;
for($i=1; $i < sizeof($type_atoms); $i++)
{
if($type_atoms[$i] != $type_atoms[$i-1])
$k++;
$specie_count[$k]++;
}
for($i=1; $i<sizeof($specie_count); $i++)
$specie_count[$i] += $specie_count[$i-1];
//print_r($specie_count);
$numatoms = trim($file[1]);
$sgno = trim($file[2]);
$origin_shift = split("[ \t]+",trim($file[3]));
$tr_x = split("[ \t]+",trim($file[4]));
$tr_y = split("[ \t]+",trim($file[5]));
$tr_z = split("[ \t]+",trim($file[6]));
$params = split("[ \t]+",trim($file[7]));
$specie = Array();
for($i = 8;$i<sizeof($file);$i++)
$specie[] = split("[ \t]+",trim($file[$i]));
$totatoms = 0;
for($i = 0; $i < sizeof($specie)-1; $i++)
{
$specie[$i][0] = $specie[$i+1][0] - $specie[$i][0] - 1;
$totatoms += $specie[$i][0];
}
$specie[sizeof($specie)-1][0] = $numatoms - $totatoms;
//print_r($specie);
//print_r($specie_count);
$atoms_counted = 0;
for($i = 0; $i < sizeof($specie); $i++)
{
# Going over atoms
$atoms_counted += $specie[$i][0];
for($j = 0; $j<sizeof($specie_count); $j++)
{
if($atoms_counted <= $specie_count[$j])
{
$specie[$i][0] = $species_type_template[$j];
break;
}
}
}
//print_r($specie);
if($_GET["identical"])
{
# Calculate the atom positions corresponding with the given POSCAR
$trmatrix=Array();
$trmatrix[0][0] = $tr_x[0];
$trmatrix[0][1] = $tr_x[1];
$trmatrix[0][2] = $tr_x[2];
$trmatrix[1][0] = $tr_y[0];
$trmatrix[1][1] = $tr_y[1];
$trmatrix[1][2] = $tr_y[2];
$trmatrix[2][0] = $tr_z[0];
$trmatrix[2][1] = $tr_z[1];
$trmatrix[2][2] = $tr_z[2];
for($i=0;$i < sizeof($specie); $i++)
{
$x = $specie[$i][1];
$y = $specie[$i][2];
$z = $specie[$i][3];
$xx = $x*$trmatrix[0][0] + $y*$trmatrix[1][0] + $z*$trmatrix[2][0];
$yy = $x*$trmatrix[0][1] + $y*$trmatrix[1][1] + $z*$trmatrix[2][1];
$zz = $x*$trmatrix[0][2] + $y*$trmatrix[1][2] + $z*$trmatrix[2][2];
$xx += $origin_shift[0];
$yy += $origin_shift[1];
$zz += $origin_shift[2];
$specie[$i][1] = $xx;
$specie[$i][2] = $yy;
$specie[$i][3] = $zz;
for($j=1;$j<4;$j++)
{
while($specie[$i][$j]>=1.0)
$specie[$i][$j]-=1.0;
while($specie[$i][$j]<0.0)
$specie[$i][$j]+=1.0;
}
}
}
$fp = fopen($outfile,"w");
fwrite($fp,"_cell_length_a"."\t".$params[0]."\n");
fwrite($fp,"_cell_length_b"."\t".$params[1]."\n");
fwrite($fp,"_cell_length_c"."\t".$params[2]."\n");
fwrite($fp,"_cell_angle_alpha"."\t".$params[3]."\n");
fwrite($fp,"_cell_angle_beta"."\t".$params[4]."\n");
fwrite($fp,"_cell_angle_gamma"."\t".$params[5]."\n");
fwrite($fp,"_symmetry_Int_Tables_number"."\t".$sgno."\n\n");
fwrite($fp, "loop_\n_atom_site_label\n_atom_site_type_symbol\n_atom_site_fract_x\n_atom_site_fract_y\n_atom_site_fract_z\n");
//print_r ($specie);
$k = 0;
$specie_type = $specie[0][0];
for($i=0;$i<sizeof($specie);$i++)
{
if($specie[$i][0] == $specie_type)
$k++;
else
{
$k = 1;
$specie_type = $specie[$i][0];
}
fwrite($fp, $specie[$i][0].sprintf("%02d",$k)."\t".$specie[$i][0]."\t".sprintf("%8.5f",$specie[$i][1])."\t".sprintf("%8.5f",$specie[$i][2])."\t".sprintf("%8.5f",$specie[$i][3])."\n");
}
fclose($fp);
?>
Some unit cell functions for Octave
May 23, 2009 Posted by Emre S. Tasci
I’ve written some functions to aid in checking the transformations as well as switching between the parameter â vector representations.
latpar2vec([a,b,c,alpha,beta,gamma])
Given the a,b,c,α,β and γ, the function calculates the lattice vectors
function f=latpar2vec(X)
% function f=latpar2vec([a,b,c,alpha,beta,gamma])
% Calculates the lattice vectors from the given lattice paramaters.
a = X(1);
b = X(2);
c = X(3);
alpha = X(4);
beta = X(5);
gamma = X(6);
% Converting the angles to radians:
alpha = d2r(alpha);
beta = d2r(beta);
gamma = d2r(gamma);
%Aligning a with the x axis:
ax = a;
ay = 0;
az = 0;
%Orienting b to lie on the x-y plane:
bz = 0;
% Now we have 6 unknowns for 6 equations..
bx = b*cos(gamma);
by = (b**2-bx**2)**.5;
cx = c*cos(beta);
cy = (b*c*cos(alpha)-bx*cx)/by;
cz = (c**2-cx**2-cy**2)**.5;
f=[ax ay az
bx by bz
cx cy cz];
endfunction
latvec2par([ax ay az; bx by bz; cx cy cz])
Calculates the lattice parameters a,b,c,α,β and γ from the lattice vectors
function f=latvec2par(x)
% function f=latvec2par(x)
% ax ay az
% x = bx by bz
% cx cy cz
%
% takes the unit cell vectors and calculates the lattice parameters
% Emre S. Tasci <e.tasci@tudelft.nl> 03/10/08
av = x(1,:);
bv = x(2,:);
cv = x(3,:);
a = norm(av);
b = norm(bv);
c = norm(cv);
alpha = acos((bv*cv')/(b*c))*180/pi;
beta = acos((av*cv')/(a*c))*180/pi;
gamma = acos((av*bv')/(a*b))*180/pi;
f = [a b c alpha beta gamma];
endfunction
volcell([a,b,c,A,B,G])
Calculates the volume of the cell from the given lattice parameters, which is the determinant of the matrice build from the lattice vectors.
function f=volcell(X)
% function f=volcell([a,b,c,A,B,G])
% Calculate the cell volume from lattice parameters
%
% Emre S. Tasci, 09/2008
a=X(1);
b=X(2);
c=X(3);
A=X(4); % alpha
B=X(5); % beta
G=X(6); % gamma
f=a*b*c*(1-cos(d2r(A))^2-cos(d2r(B))^2-cos(d2r(G))^2+2*cos(d2r(A))*cos(d2r(B))*cos(d2r(G)))^.5;
endfunction
Why’s there no “volcell” function for the unit cell vectors? You’re joking, right? (det(vector)) ! 🙂
Example
octave:13> % Define the unit cell for PtSn4 :
octave:13> A = latpar2vec([ 6.41900 11.35700 6.38800 90.0000 90.0000 90.0000 ])
A =
6.41900 0.00000 0.00000
0.00000 11.35700 0.00000
0.00000 0.00000 6.38800
octave:14> % Cell volume :
octave:14> Apar = [ 6.41900 11.35700 6.38800 90.0000 90.0000 90.0000 ]
Apar =
6.4190 11.3570 6.3880 90.0000 90.0000 90.0000
octave:15> % Define the unit cell for PtSn4 :
octave:15> Apar=[ 6.41900 11.35700 6.38800 90.0000 90.0000 90.0000 ]
Apar =
6.4190 11.3570 6.3880 90.0000 90.0000 90.0000
octave:16> % Cell volume :
octave:16> Avol = volcell (Apar)
Avol = 465.69
octave:17> % Calculate the lattice vectors :
octave:17> A = latpar2vec (Apar)
A =
6.41900 0.00000 0.00000
0.00000 11.35700 0.00000
0.00000 0.00000 6.38800
octave:18> % Verify the volume :
octave:18> det(A)
ans = 465.69
octave:19> % Define the transformation matrix :
octave:19> R = [ 0 0 -1 ; -1 0 0 ; .5 .5 0]
R =
0.00000 0.00000 -1.00000
-1.00000 0.00000 0.00000
0.50000 0.50000 0.00000
octave:21> % The reduced unit cell volume will be half of the original one as is evident from :
octave:21> det(R)
ans = 0.50000
octave:22> % Do the transformation :
octave:22> N = R*A
N =
-0.00000 -0.00000 -6.38800
-6.41900 0.00000 0.00000
3.20950 5.67850 0.00000
octave:23> % The reduced cell parameters :
octave:23> Npar = latvec2par (N)
Npar =
6.3880 6.4190 6.5227 119.4752 90.0000 90.0000
octave:24> % And the volume :
octave:24> det(N), volcell (Npar)
ans = 232.84
ans = 232.84